Identification of NAD(P)H Quinone Oxidoreductase Activity in Azoreductases from P. aeruginosa: Azoreductases and NAD(P)H Quinone Oxidoreductases Belong to the Same FMN-Dependent Superfamily of Enzymes
نویسندگان
چکیده
Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(P)H quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(P)H quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions.
منابع مشابه
Evaluation of the risk of lung cancer associated with NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism in male current cigarette smokers from the Eastern India
NAD(P)H: quinone oxidoreductase 1 (NQO1) is an endogenous cellular defence mechanism against several carcinogenic quinones derived from cigarette smoke. NQO1 C609T polymorphism is a strong determinant of NQO1 structure and function. The people with mutant allele for this polymorphism has significantly reduced NQO1 activity. In this study, we tried to evaluate the risk of lung cancer as...
متن کاملDetection of NAD(P)H: Quinone Oxidoreductase 609C T Polymorphism in Blood and Archival Human Tissues Using a Simple PCR Method
متن کامل
Reduction of azo dyes and nitroaromatic compounds by bacterial enzymes from the human intestinal tract.
Several anaerobic bacteria from the human intestinal tract are capable of reducing azo dyes and nitropolycyclic aromatic hydrocarbons to the corresponding aromatic amines with enzymes that have azoreductase and nitroreductase activities. The majority of bacteria with these activities belong to the genera Clostridium and Eubacterium. The azoreductases and nitroreductases from three Clostridium s...
متن کاملComparative enzymatic analysis of azoreductases from Bacillus sp. B29.
We cloned and expressed two genes encoding azoreductase homologes, AzrB and AzrC, from Bacillus sp. B29. Purified recombinant AzrB and AzrC were homodimers with 23 kDa identical subunits, and were flavoproteins. NADH was preferred as electron donors for both azoreductases. The azoreductases showed optimal activities at 70 degrees C (AzrB) and 55 degrees C (AzrC), and retained activities up to 5...
متن کاملPreliminary Report of NAD+-Dependent Amino Acid Dehydrogenase Producing Bacteria Isolated from Soil
Amino acid dehydrogenases (L-amino acid: oxidoreductase deaminating EC 1.4.1.X) are members of the wider superfamily of oxidoreductases that catalyze the reversible oxidative deamination of an amino acid to its keto acid and ammonia with the concomitant reduction of either NAD+, NADP+ or FAD. These enzymes have been received much attention as biocatalysts for use in biosensors or diagnostic kit...
متن کامل